MICROGININ, AN ANGIOTENSIN-CONVERTING ENZYME INHIBITOR FROM THE BLUE-GREEN ALGA Microcystis aeruginosa

Tatsufumi Okino, Hisashi Matsuda, Masahiro Murakami* and Katsumi Yamaguchi Laboratory of Marine Biochemistry, Faculty of Agriculture,

The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract: Microginin, an angiotensin-converting enzyme inhibitory pentapeptide, was isolated from the freshwater blue-green alga *Microcystis aeruginosa*. Its structure was elucidated to be 1 on the basis of 2D NMR data and chemical degradation.

Microalgae have recently received much attention as sources of novel bioactive compounds.¹⁻⁵⁾ Especially, blue-green algae have been shown to be excellent producers for cytotoxins and fungicides by Moore et al.⁶⁾ In the course of our screening program of enzyme inhibitors from microalgae,⁷⁾ we isolated an angiotensin-converting enzyme inhibitory peptide from the cultured freshwater blue-green alga Microcystis aeruginosa (NIES-100), which is well known to produce hepatotoxic peptides microcystins.⁸⁾ Angiotensin-converting enzyme inhibitors have been developed as antihypertensive agents.⁹⁾ In this paper, we describe the isolation and structure elucidation of a linear pentapeptide microginin (1).

M. aeruginosa was obtained from the NIES-collection (Microbial Culture Collection, the National Institute for Environmental Studies, Japan) and cultured in 10 L glass bottles containing MA medium [Ca(NO₃)₂·4H₂O 5 mg, KNO₃ 10 mg, NaNO₃ 5 mg, Na₂SO₄ 4 mg, MgCl₂·6H₂O 5 mg, β-Na₂glycerophosphate 10 mg, Na₂EDTA·2H₂O 0.5 mg, FeCl₃·6H₂O 0.05 mg, MnCl₂·4H₂O 0.5 mg, ZnCl₂ 0.05 mg, CoCl₂·6H₂O 0.5 mg, Na₂MoO₄·2H₂O 0.08 mg, H₃BO₃ 2 mg, BICINE 50 mg, distilled water 100 mL, pH 8.6]¹⁰⁾

Table 1. $^{13}\mathrm{C}$ and $^{1}\mathrm{H}$ NMR Spectra of Microginin in DMSO- d_6

Carbon	position	C (mult)	H (mult, J Hz)	нмвс	correlations from C to
Ahda	1	170.2 (s)		Ahda	H-2,H-3, Ala H-2,NH
	2	69.4 (d)	4.05 (brs)	Ahda	H-3
	2-OH		6.48 (br)		
	3	53.0 (d)	3.22 (m)	Ahda	H-2
	3-NH ₂		7.76 (br)		
	4	28.7 (t)	1.42 (m)	Ahda	H-2,H-3
			1.58 (m)		
	5	24.6 (t)	1.30 (m)	Ahda	H-3
	6	28.6 (t)*	1.23 (m)		
	7	28.4 (t)*	1.23 (m)		
	8	31.1 (t)	1.22 (m)	Ahda	H-10
	9	22.0 (t)	1.23 (m)	Ahda	H-10
	10	13.9 (q)	0.85 (t, 6.6)		
Ala	1	171.6 (s)			2,H-3, Val H-2,NH
	2	47.7 (d)	4.33 (dd, 7.4, 6.9)	Ala H	
	3	18.5 (q)	1.10 (d, 6.9)	Ala H	-2
	NH		7.99 (d, 7.4)		
Val	1	171.5 (s)			2, MeTyr H-2,N-Me
	2	53.7 (d)	4.41 (dd, 9.0, 7.8)	Val H-	•
	3	30.2 (d)	1.87 (dq, 7.8, 6.0)	Val H-	
	4	19.2 (q)	0.77 (d, 6.0)	Val H	-
	4'	18.0 (q)	0.78 (d, 6.0)	Val H-	-2,H-4
MeTyr	NH	160 0 (-)	8.05 (d, 9.0)	M - T	
	1	169.8 (s)	£ 31 (44 00 C1)		H-2,H-3, Tyr H-2,NH
	2	56.7 (d)	5.21 (dd, 8.0, 6.1)		H-3,N-Me
	3	33.1 (t)	2.63 (dd, 14.5, 6.1)	Melyr	Н-2,Н-5
	4	127 6 (a)	3.02 (dd, 14.5, 6.1)	MaTur	
	5	127.6 (s)	6 02 (4 8 2)	•	H-2,H-3,H-6
	6	129.4 (d) 114.9 (d)	6.92 (d, 8.2) 6.58 (d, 8.2)	MeTyr	H-6,OH
	7	155.6 (s)	0.38 (u, 8.2)	MeTyr	
	OH	155.0 (8)	9.15 (brs)	METY	11-0
	N-Me	30.9 (q)	2.77 (s)	MeTyr	. น_ว
Tyr	1	172.8 (s)	2.77 (8)	Tyr H-	
	2	53.7 (d)	4.32 (m)	Tyr H	
	3	35.6 (t)	2.79 (m)	Tyr H-	
	-	55.5 (1)	2.92 (dd, 14.3, 4.7)	- ,	-,
	4	127.6 (s)	(,, ***)	Tyr H-	2,H-3,H-6
	5	129.9 (d)	6.93 (d, 8.2)	Tyr H	
	6	114.9 (s)	6.62 (d, 8.2)	Tyr H-	
	7	155.9 (s)	/	Tyr H-	*
	ОH		9.22 (brs)	•	
	NH		7.96 (d, 7.7)		

^{*:}Interchangeable

under illumination of 80 μ E/m²·s. The 80 % methanol extract of freeze-dried algal cells (27 g from 380 L of culture) was partitioned between water and diethyl ether, and the aqueous layer was further extracted with *n*-butanol. The *n*-butanol layer was subjected to ion-exchange column chromatography (DEAE TOYOPEARL 650-S 5-150 mM HCOONH₄) followed by reversed phase HPLC (YMC-Pack ODS AM, 35 % MeCN 0.1 %

TFA) to yield 36 mg of microginin (1). Microginin is colorless amorphous powder and positive to ninhydrin: $[\alpha]_D$ -80° (c=0.02, MeOH); UV (MeOH) λ max 224 nm (ϵ 15400), The IR spectrum showed the presence of amide carbonyl groups (1640-1660 cm⁻¹) and hydroxyl groups (3400 cm⁻¹). The molecular formula of microginin was determined to be $C_{37}H_{55}N_5O_9$ by HRFABMS $[m/z 714.4078 (M+H)^+ \Delta 3.6 mmu]$ and NMR data. The spectra of ¹H and ¹³C NMR (Table 1) were characteristic of peptide. Amino acid analysis of the acid hydrolysate of 1 (6 N HCl, 16 hr) gave Ala, Val, Tyr, N-MeTyr and an unknown amino acid. The detailed analyses of ¹H-¹H COSY, HOHAHA, ¹¹) HMQC¹²) and HMBC¹³) spectra supported the presence of the usual amino acids. And the HMBC correlation (N-Me δH 2.77, δC 30.9/CH δH 5.21, δC 56.7) indicated the presence of N-MeTvr. The unknown amino acid, N-MeTvr and Tvr were isolated by column chromatography (Hitachi Custom Ion Exchange Resin 2614, Et₃N/AcOH) followed by HPLC (YMC-Pack ODS AM, H₂O and 60 % MeOH). The structure of the unknown amino acid was decided to be a new β amino acid, 3-amino-2-hydroxydecanoic acid (Ahda) by the interpretation of ¹H NMR (δ 0.85, 3H, t; δ 1.2-1.3, 12H, m; δ 3.08, 1H, br; δ 3.54, 1H, m), ¹³C NMR (δ 13.95, 22.07, 25.20, 28.48, 28.90 (2C), 31.17, 52.30, 69.60), ${}^{1}H^{-1}H$ COSY, ${}^{1}H^{-13}C$ COSY and positive FABMS (m/z 204, $[M+H]^{+}$). The CD spectrum of Ahda exhibited a negative Cotton effect at 215 nm, suggesting the stereochemistry of C-2 of α-hydroxy-β-amino acid to be R.¹⁴) Long chain β-amino-αhydroxy-amino acids were found in puwainaphycins isolated from a blue-green alga Anabaena sp.2) The configuration of N-MeTyr was determined to be L by the CD spectrum (a positive Cotton effect at 224 nm) of isolated one. The stereochemistries of the usual amino acids were assigned to be L by the chiral GC analyses (Chirasil-Val, Alltech) of N-trifluoroacetyl methyl ester derivatives of the acid hydrolysate. sequence of microginin was deduced by HMBC correlations (Ahda CO/Ala NH and α-H, Ala CO/Val NH and α -H, Val CO/N-MeTyr N-CH₃ and α -H, N-MeTyr CO/Tyr NH and α -H)(Table 1) and ROESY correlations¹⁵) (Ahda α -H/Ala NH, Ala α -H/Val NH, Val α -H/N-MeTyr N-Me and Tyr NH/ N-MeTyr N-Me and α -H) (Fig. 1). Furthermore fragmentation of FABMS (m/z) 533 supported that Tyr was the terminal amino acid.

Fig.1 HMBC and ROESY correlations of microginin

Microginin inhibits angiotensin-converting enzyme with an IC₅₀ of 7.0 μ g/mL, but doesn't inhibit papain, trypsin, chymotrypsin and elastase at 100 μ g/mL. Study on stereochemistry of C-3 of Ahda is under progress.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References

- J. M. Gregson, J. L. Chen, G. M. L. Patterson and R. E. Moore, *Tetrahedron*, 48, 3727 (1992).
- 2) F. E. Koehn, R. E. Longley and J. K. Reed, J. Nat. Prod. 55, 613 (1992).
- 3) M. Murakami, H. Matsuda, K. Makabe and K. Yamaguchi, *Tetrahedron Lett.*, 32, 2391 (1991).
- 4) M. Satake, M. Murata, T. Yasumoto, T. Fujita and H. Naoki, J. Am. Chem. Soc., 113, 9859 (1991).
- 5) M. Murakami, K. Makabe, K. Yamaguchi, S. Konosu and M. R. Wälchli, *Tetrahedron Lett.*, 29, 1149 (1988).
- 6) R. E. Moore, S. Banarjee, V. Bornemann, F. R. Caplan, J. L. Chen, D. G. Corley, L. K. Larsen, B. S. Moore, G. M. L. Patterson, V. J. Paul, J. B. Stewart and D. E. Williams, Pure & Appl. Chem., 61, 521 (1989).
- 7) K. Yamaguchi, M. Murakami and T. Okino, J. Appl. Phycol., 1, 271 (1989).
- 8) W. W. Carmichael: *Handbook of Natural Toxins*; Tu A. T. Ed., Marcel Dekker, New York, pp 121 (1988).
- 9) M. J. Wyvratt and A. A. Patchett, Med. Res. Rev., 5, 483 (1985).
- M. M. Watanabe and K. N. Satake, NIES-Collection List of Strains Third Edition Microalgae and Protozoa Microbial Culture Collection, Natl. Inst. Environ. Stud., Tsukuba, Japan, pp 32 (1991).
- 11) D. G. Davis and A. Bax, J. Am. Chem. Soc., 107, 2820 (1985).
- 12) A. Bax and S. Subramanian, J. Magn. Reson., 67, 565 (1986).
- 13) A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).
- 14) B.Sjöberg, Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry; G. Snatzke Ed., Holden-Day, San Francisco, pp 304 (1965).
- 15) A. Bax and D. G. Davis, J. Magn. Reson., 63, 207 (1985).

(Received in Japan 24 September 1992)